
SIGMo: High-Throughput Batched Subgraph Isomorphism
on GPUs for Molecular Matching

Antonio De Caro

antdecaro@unisa.it

University of Salerno

Salerno, Italy

Gennaro Cordasco

gcordasco@unisa.it

University of Salerno

Salerno, Italy

Federico Ficarelli

f.ficarelli@cineca.it

CINECA

Bologna, Italy

Biagio Cosenza

bcosenza@unisa.it

University of Salerno

Salerno, Italy

Abstract
Subgraph isomorphism is a fundamental graph problem with appli-

cations in diverse domains from biology to social network analysis.

Of particular interest is molecular matching, which uses a sub-

graph isomorphism formulation for the drug discovery process.

While subgraph isomorphism is known to be NP-complete and

computationally expensive, in the molecular matching formulation

a number of domain constraints allow for efficient implementations.

This paper presents SIGMo, a high-throughput, portable subgraph

isomorphism framework for GPUs, specifically designed for batch

molecular matching. SIGMo takes advantage of the specific domain

formulation to provide a more efficient filter-and-join strategy:

the framework introduces a novel multi-level iterative filtering

technique based on neighborhood signature encoding to efficiently

prune candidates prior to a GPU-optimized join phase using a stack-

based DFS traversal. The GPU implementation is written in SYCL,

allowing portable execution on AMD, Intel, and NVIDIA GPUs. Our

experimental evaluation on a large dataset from ZINC demonstrates

up to 1470× speedup over state-of-the-art subgraph isomorphism

frameworks, and achieves a throughput of 7.7 billion matches per

second on a cluster with 256 GPUs.

Keywords
Subgraph Isomorphism, GPU, Molecular Matching

ACM Reference Format:
Antonio De Caro, Gennaro Cordasco, Federico Ficarelli, and Biagio Cosenza.

2025. SIGMo: High-Throughput Batched Subgraph Isomorphism on GPUs

for Molecular Matching. In Proceedings of The International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC’25).
ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SC’25, St. Louis, MO
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Graph algorithms are a powerful abstraction for representing and

modeling a wide variety of problems, and are indeed used in diverse

domains such as biology [30], chemistry [51], and social network

analysis [4]. High-performance implementations of graph algo-

rithms are therefore extremely important to tackle the complexity

of such analyses at scale, but efficient solutions are highly tailored

to specific algorithms and the underlying architecture.

Graph isomorphism, which concerns determining whether two

graphs are structurally identical (i.e., whether there exists a bijective

mapping between their vertices that preserves edges), can be solved

in quasipolynomial time [3]. In contrast, subgraph isomorphism,

which asks whether a smaller graph (the query graph or pattern)

exists as a subgraph within a larger graph (the data graph or target)

with structure preserved under an injective mapping, is known to

be NP-complete and, in general, considerably more computationally

demanding.

Despite its computational cost, the subgraph isomorphism prob-

lem has broad applications across several scientific fields where

the goal is to detect the presence of a known structure within a

larger dataset. Examples of subgraph isomorphism applications

range from computer vision [1, 57] to cheminformatics [15], and

from graph databases [2] to machine learning [47].

In this paper, we focus on subgraph isomorphism for molecular
matching: molecules and functional groups are represented by data

and query graphs, modeled as undirected, cyclic, and labeled graphs

where nodes represent atoms and edges represent chemical bonds.

This formulation has particular relevance to computer-aided drug

discovery process [22].

Despite the complexity of the underlying subgraph isomorphism

formulation, the molecular matching problem offers a number of

caveats that allow us for more efficient and domain-tailored algo-

rithm implementations.

First, the problem is subject to domain constraints: a limited

label set, low average degree, and high sparsity. Exploring such con-

straints allows advanced optimizations in the most computationally

expensive part of the algorithm, for example, a more efficient filter

in a filter-and-join strategy [52].

Second, while traditional graph analysis frameworks focus on

scaling with the size of the input graph, in molecular matching we

are more interested in scaling with the number of molecules we

can process per second, i.e. high throughput for batch queries. This

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SC’25, June 16–21, 2025, St. Louis, MO De Caro et al.

favors a different approach to parallelization, and in particular a

different mapping to modern massively parallel GPU architectures.

This paper proposes a high-performance GPU implementation

of batch subgraph isomorphism. The SYCL-based implementation

is performance-portable and supports both node-to-node (Find All)
and graph-to-graph (Find First) queries.

In summary, this paper makes the following contributions.

• A novel vertex filtering algorithm that iteratively refines can-

didate sets by progressively expanding each node’s neigh-

borhood, enabling early pruning of invalid matches;

• SIGMo, the first high-performanceGPU framework for batched

subgraph isomorphism, specifically designed for efficient

molecular matching at scale, supporting both exhaustive

enumeration of node-to-node matches (Find All) and graph-

to-graph matches (Find First);
• A comprehensive experimental evaluation of SIGMo against

state-of-the-art subgraph isomorphism frameworks, includ-

ing performance comparisons across NVIDIA, AMD, and

Intel GPU architectures, and a scalability study on a cluster

of 256 GPUs.

2 Background
In cheminformatics, molecules are naturally represented as graphs,

where atoms are vertices and atomic bonds are edges, both aug-

mented with physical and chemical properties as shown in Figure 1.

H

H

H

H

C

C
C

C

N C

O

C
H H

H

H

H

H

H

C

C
C

C

N C

O

C
H H

H

Figure 1: Graph representation of N-Acetylpyrrole molecule.

Rule-based cheminformatics methods rely on the enumeration

of all isomorphisms between a query graph and a large number

of data graphs. A common example of such methods is the enu-

meration of protonation states [45] where graph patterns are used

to identify atoms with multiple proton configurations. Another

common example is rule-based force fields, commonly used in tasks

such as conformer generation and molecular dynamics. Computing

higher-order parameters like bond torsional angles, dihedral an-

gles, and bond lengths is typically done using quantum mechanics

simulations. To avoid the high computational cost associated with

quantum-level simulations, force fields are defined by precomput-

ing such parameters for representative sets of functional groups

(small molecular subgraphs) and collecting them in parameter ta-

bles. Each set of parameters is associated with an atom type, a label
that enables the retrieval of quantum-level parameters for atoms

based on their chemical environment (i.e., graph neighborhood). To

perform atom typing, all valid subgraph isomorphisms between the

input molecule (data graph) and all rules (query graphs) must be

enumerated. All widely used force fields are based on atom typing:

biomolecular (AMBER [38], CHARMM [54], OPLS-AA [26]), general

organic (MMFF94 [19], UFF [39]), and specialized (CGenFF [53],

Tripos [9]) force fields rely on isomorphism enumeration and are

widely used in small molecule generation, molecular docking, and

protein simulation. Rule-based force fields are the workhorses of

cheminformatics.

Among other tasks such as conformer generation [33] and gener-

ative chemistry [42], the most challenging application of subgraph

isomorphisms in terms of scale is searching for specific functional

groups in large compound databases [5]. Compound databases are

key assets for pharmaceutical companies, as they are typically cu-

rated and maintained as central components of drug discovery

workflows [22]. Moreover, molecular databases comprising tril-

lions of compounds are produced as outcomes of large-scale virtual

screening campaigns [17].

2.1 Molecular Matching
In this work, we focus on the application of the subgraph isomor-

phism problem for the cheminformatics of small molecules—an

area of particular relevance to computer-aided drug discovery [22].

To represent molecules and functional groups, both data and query

graphs are modeled as undirected, cyclic, and labeled. Their vertices

have degree-bounded by the maximum number of atomic bonds

an element can form, according to its valence electron configura-

tion and chemical context. Since drug discovery typically targets

the chemical space of organic molecules, the distribution of vertex

degrees cannot exceed 6 with an average value of approximately 4

(due to carbon atoms) [10]. Data graphs reflect the size of drug-like

molecules, which usually consist of a few hundred atoms, with

most drug molecules containing fewer than 200 atoms [28]. In con-

trast, the number of molecules processed during a virtual screening

campaign can scale to the trillions [17]. Meanwhile, the number of

patterns to be searched is fixed and relatively small, reaching up to

a thousand only in specific fingerprinting tasks [31].

2.2 Problem Definition and Constraints
We use standard notation for graphs: a graph is a pair𝐺 = (𝑉𝐺 , 𝐸𝐺)
of sets of nodes 𝑉𝐺 and edges 𝐸𝐺 where each edge connects a pair

of nodes, i.e., 𝐸𝐺 ⊆ 𝑉 × 𝑉 . By graph, we mean a simple, finite,

undirected, connected graph. The order and size of 𝐺 are denoted

by 𝑛 = |𝑉𝐺 | and𝑚 = |𝐸𝐺 |.
For a set of nodes 𝑋 ⊆ 𝑉𝐺 , we denote 𝐺 [𝑋] as the induced

subgraph of 𝐺 generated by 𝑋 , that is, the graph whose node set is

𝑋 and whose edge set consists of all the edges in 𝐸𝐺 that have both

endpoints in 𝑋 . Given two nodes 𝑢, 𝑣 ∈ 𝑉𝐺 , we denote 𝑑𝐺 (𝑢, 𝑣) as
the distance between 𝑢 and 𝑣 in 𝐺 . Moreover, for a node 𝑣 ∈ 𝑉𝐺 ,
we denote 𝑁𝐺 (𝑣) = {𝑢 ∈ 𝑉𝐺 | (𝑢, 𝑣) ∈ 𝐸𝐺 } as the neighborhood of

𝑣 and 𝑁𝑑
𝐺

= {𝑢 ∈ 𝑉𝐺 | 𝑢 ≠ 𝑣 ∧ 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑} as the neighborhood
of radius 𝑑 around 𝑣 . In the following, we omit the subscript 𝐺

whenever the graph is clear from the context.

In this paper, we deal with node-labeled graphs where a set

of labels L identifies some peculiarity of each node. Formally, a

node-labeled graph is a triple 𝐺 = (𝑉 , 𝐸, 𝐿) where (𝑉 , 𝐸) defines
the structure of the graph and 𝐿 : 𝑉 → L is a mapping from the

set of nodes 𝑉 to the set of labels L.

Definition 2.1. Let𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝐿𝐷) be a data graph and𝐺𝑄 =

(𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄) be a query graph. A subgraph 𝐻 = 𝐺𝐷 [𝑋] induced by

SIGMo SC’25, June 16–21, 2025, St. Louis, MO

𝑋 ⊆ 𝑉𝐷 is isomorphic to 𝐺𝑄 if there exists a bijection 𝑓 : 𝑉𝑄 → 𝑋

such that:

(1) for each 𝑣 ∈ 𝑉𝑄 we have 𝐿𝑄 (𝑣) = 𝐿𝐷 (𝑓 (𝑣))
(2) if (𝑣,𝑢) ∈ 𝐸𝑄 then (𝑓 (𝑣), 𝑓 (𝑢)) ∈ 𝐸𝐻
The (1) indicates that the function 𝑓 must preserve labels, while

(2) ensures that all edges in the query graph are contained in the

subgraph of the target graph induced by 𝑋 .

We will consider the following problem.

Node-Labeled Subgraph Matching (NLSM):

Input: A data graph 𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝐿𝐷) and a query

graph 𝐺𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄).
Output:X = {𝑋 ⊆ 𝑉𝐷 | 𝐺𝐷 [𝑋] is isomorphic to 𝐺𝑄 }.

This formulation sets the basis for our domain-aware subgraph

matching strategies.

3 Molecular Matching Strategy
The NLSM problem is a fundamental problem with applications in

various domains, including molecular matching for drug discovery

where the graphs are characterized by:

• A limited label set, constrained by the chemical elements in

the periodic table;

• A low average degree (typically ≤ 4), reflecting atomic va-

lency constraints;

• High sparsity (≥ 95%) [14];

Our approach follows the filter-and-join strategy [52], consisting

of two main phases. In the filtering phase, the algorithm iteratively

refines the set of candidate nodes for each node in the query graph,

eliminating those that would lead to invalid results. Once filtering

is complete, the joining phase begins, where candidate nodes are

assembled into valid candidate chains, which are then combined

and validated to produce the final solutions.

Filter. The filtering operation (see Algorithm 1) uses the concept

of node signature, represented as an array of |L| integers, to evaluate
compatibility between nodes. This filtering process is conducted in

multiple stages. At stage 𝑖 , the signature of a node 𝑣 is computed

based on its neighborhood within a radius of 𝑖 .

As more stages are performed, additional candidates are filtered

out, thereby simplifying the subsequent join operations. The goal

is to find a trade-off between the number of stages and the number

of resulting candidates.

Initially, the algorithm populates the set of candidates for each

query node with data nodes that share the same label. In the first

stage, it constructs a signature for each query and data node by

counting, for each label, the number of neighboring nodes with

that label.

To satisfy the conditions defined in Definition 2.1, the signature

of a data node 𝑢 must dominate the signature of the corresponding

query node. Specifically, for each label ℓ ∈ L, the data node 𝑢 must

have at least as many neighbors with label ℓ as indicated in the

query node’s signature.

Subsequent stages are similar to the first one, but the signatures

are computed over an increasingly extended neighborhood.

To build the signature of a node, we borrowed the idea of 𝑛–view
fromVSGM [25]. To identify the 𝑖-view of a particular node𝑢, which

corresponds to the neighborhood of radius 𝑖 around 𝑢, we calculate

Algorithm 1 Filtering process pseudocode.

1: function Filter(𝐺𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄),𝐺𝐷 = (𝑉𝐷 , 𝐸𝐷 , 𝐿𝐷))
2: 𝐶 ← InitializeCandidates(𝐺𝑄 ,𝐺𝐷)
3: 𝑘 ← 1

4: repeat
5: 𝑆𝑄 ← GenerateSignatures(𝐺𝑄 , 𝑘)
6: 𝑆𝐷 ← GenerateSignatures(𝐺𝐷 , 𝑘)
7: 𝐶 ← RefineCandidates(𝐺𝑄 ,𝐺𝐷 , 𝑆𝑄 , 𝑆𝐷 ,𝐶)
8: 𝑘 ← 𝑘 + 1
9: until 𝑘 = 𝑠 where 𝑠 is the maximum amount of iterations

10: return 𝐶

11: kernel GenerateSignatures(𝐺 = (𝑉 , 𝐸, 𝐿), 𝑘)
12: ⊲ 𝑆 is the signatures matrix where 𝑆 (𝑣, 𝑙) denotes the number

of occurrences of nodes having label 𝑙 in the neighborhood of

radius 𝑘 around 𝑣

13: ⊲ 𝑅𝑘 (𝑣) is the number of nodes at distance 𝑘 from 𝑣

14: for all 𝑣 ∈ 𝑉 do ⊲ parallel for

15: 𝑅𝑘 (𝑣) ← 𝑁𝑘 (𝑣) \ 𝑁𝑘−1 (𝑣)
16: for all 𝑢 ∈ 𝑅𝑘 (𝑣) do
17: 𝑆 (𝑣, 𝐿(𝑢)) ← 𝑆 (𝑣, 𝐿(𝑢)) + 1
18: return 𝑆

19: kernel RefineCandidates(𝐺𝑄 ,𝐺𝐷 , 𝑆𝑄 , 𝑆𝐷 ,𝐶𝑝𝑟𝑒𝑣)

20: for all 𝑣𝑞 ∈ 𝑉𝑄 do
21: 𝐶 (𝑣𝑞) = ∅
22: for all 𝑣𝑑 ∈ 𝑉𝐷 do ⊲ parallel for

23: for all 𝑣𝑞 ∈ 𝑉𝑄 do
24: if 𝑣𝑑 ∈ 𝐶𝑝𝑟𝑒𝑣 (𝑣𝑞) then
25: for all 𝑙 ∈ L do
26: if 𝑆𝑄 (𝑣𝑞, 𝑙) ≤ 𝑆𝐷 (𝑣𝑑 , 𝑙) then
27: 𝐶 (𝑣𝑞) ← 𝐶 (𝑣𝑞) ∪ {𝑣𝑑 }
28: return 𝐶

29: kernel InitializeCandidates(𝐺𝑄 ,𝐺𝐷)

30: ⊲ 𝐶 is the candidate vector where 𝐶 (𝑣𝑞) is the set of
candidates for 𝑣𝑞 .

31: for all 𝑣𝑞 ∈ 𝑉𝑄 do
32: 𝐶 (𝑣𝑞) = ∅
33: for all 𝑣𝑑 ∈ 𝑉𝐷 do ⊲ parallel for

34: for all 𝑣𝑞 ∈ 𝑉𝑄 do
35: if 𝐿𝑄 (𝑣𝑞) = 𝐿𝐷 (𝑣𝑑) then
36: 𝐶 (𝑣𝑞) ← 𝐶 (𝑣𝑞) ∪ {𝑣𝑑 }
37: return 𝐶

the graph power 𝐺𝑖
, defined as the graph that connects nodes in 𝐺

if their distance is at most 𝑖 . This is achieved by performing 𝑖 BFS

steps starting from node 𝑢.

The rationale behind this iterative approach is that the structural

mismatches between the query graph and the data graph may not

be immediately apparent at distance 1 but become evident when

considering larger neighborhood contexts. By iteratively increasing

the scope of the node’s view, the algorithm systematically eliminates

nodes that cannot be part of a valid mapping, reducing the search

space before the more computationally expensive join phase.

During each refinement step, filtering operations are applied

to further reduce the candidate set for each node. It is important

SC’25, June 16–21, 2025, St. Louis, MO De Caro et al.

SIGMo

Input

O
utput

CSR-GO

Convert to  
CSR-GO

Allocate
Candidates

Queries 
(Query Graphs)

Molecules 
(Data Graphs)

Generate Query
Signatures Gi

C

Filter Mapping
CSR-GO

GMCR
Join

Refinement Iters.for i = 1 →

GPU Kernel Host Memory GPU Memory

Queries

Molecules

Matches

Data Movement

1 2

3

4 5 6

x

Generate Data
Signatures Gi3

Figure 2: Framework Overview. SIGMo’s pipeline includes six stages. It starts by converting input graphs into the CSR-GO ❶

format and initializing candidate sets ❷. The filtering phase then iteratively generates neighborhood-based signatures ❸ to
prunes candidates ❹. After filtering, query graphs are mapped to data graphs ❺, and the join phase identifies valid subgraph
matches ❻. Colored lines indicate inputs/outputs of each kernel throughout the pipeline.

to note that the filtering performed at iteration 𝑖 must take into

account the candidate set from iteration 𝑖 − 1. Specifically, if a data
node 𝑢𝑑 is not a valid candidate for a query node 𝑢𝑞 at iteration

𝑖 − 1, it cannot become a valid candidate at iteration 𝑖 .

To filter multiple query and data graphs, we join all query graphs

and all data graphs into two separate disconnected graphs.

Filter Complexity Analysis. To analyze the complexity of the filter
algorithm (Alg. 1), let us break it down into its core components.

The signature generation step performs a BFS starting from each

node in the graph, which in total takes 𝑂 (𝑛𝑑𝑚𝑑) time, where 𝑛𝑑
and𝑚𝑑 denote the number of nodes and edges in 𝐺𝐷 respectively.

The InitializeCandidates procedure takes𝑂 (𝑛𝑑𝑛𝑞) time. Then,

for each stage, the RefineCandidates procedure takes𝑂 (𝑛𝑑𝑛𝑞 |L|)
time. Hence, the overall complexity is𝑂 (𝑛𝑑𝑚𝑑 +𝑘𝑛𝑑𝑛𝑞 |L|). Assum-

ing that 𝑘 and |L| are constants, the total cost of the filter algorithm
is dominated by the time required to perform BFS traversals from

each node in the data graph.

Join. The joining phase uses a backtracking approach over the

pruned candidates to explore how they can be mapped to query

nodes while preserving the query topology. During this process,

edge labels are evaluated to prevent invalid matches.

4 SIGMo Implementation
In this section, we describe the implementation details of SIGMo.

An overview of the framework pipeline is presented in Figure 2.

SIGMo is implemented using SYCL [18], a single-source, cross-

platform abstraction layer that enables portable programming across

heterogeneous hardware architectures. In contrast to most exist-

ing GPU-accelerated subgraph isomorphism frameworks—typically

implemented in CUDA and thus limited to NVIDIA GPUs—SYCL al-

lows SIGMo to target a broader range of devices, including NVIDIA,

AMD, and Intel GPUs. This portability is particularly important

given current hardware trends: as of November 2024, 7 out of the

top 10 systems in the TOP500 list [50] are equipped with GPUs

from vendors other than NVIDIA.

Throughout this section, we adopt the SYCL platform and mem-

ory model terminology. A work-item corresponds to a single GPU

thread executing a kernel instance. A work-group is a one-, two-, or

0 2 4 6 8 10 11 14 15 16

1 4 0 2 1 3 2 4 0 3 6 5 7 8 6 6

0 1 2
0 5 95 6

7

8G1
0

1 4

2 3
G0

Graph Offsets

(Our Contribution)

Row Offsets

Column Indices

G1G0

Figure 3: Illustration of the CSR-GO representation.

three-dimensional collection of work-items, analogous to a CUDA

block. A sub-group represents a contiguous set of work-items that

execute in Single Instruction Multiple Threads (SIMT) fashion; this

concept is equivalent to a CUDA warp or an AMD wavefront. In
terms of memory hierarchy, local memory refers to the shared (lo-
cal) memory accessible to all work-items within a work-group,

commonly used for low-latency communication and data reuse. In

contrast, private memory denotes memory that is exclusive to a

single work-item—analogous to thread-local storage.

4.1 CSR-GO Graph Representation
To represent both query and data graphs, we propose a data struc-

ture based on the classic Compressed Sparse Row (CSR) format [46],

extended with an additional layer we term graph offsets. This repre-
sentation, referred to as CSR-GO, is designed to handle disconnected

graphs without losing information about connected components.

Specifically, it introduces an auxiliary vector, graph offsets, whose

length equals the number of graphs plus one. Each entry in this

vector serves as a pointer mapping a segment of the row offsets

array to a specific graph, working analogously to how row offsets

map rows to adjacency lists. Figure 3 illustrates this representation.

Given a node ID, the corresponding graph can be efficiently

determined via a binary search over the graph offsets array. This

extension enables the storage and processing of multiple graphs

within a unified structure, without duplicating metadata or sacrific-

ing query performance. Moreover, it is particularly advantageous

during the join operation, as described in Section 4.6. In our design,

each work item is responsible for processing a single graph. As a

result, the relevant range in the row offsets array can be efficiently

retrieved by accessing only the graph offsets array.

SIGMo SC’25, June 16–21, 2025, St. Louis, MO

4.2 Signature Representation
SIGMo vertex signatures are implemented as masked bitsets. Specif-

ically, a 64-bit integer is partitioned into groups of bits, with each

group corresponding to a particular vertex label. The number of

supported labels is bounded by the set of elements in the periodic

table, with a focus on those commonly found in organic molecules.

However, element frequencies in organic compounds are highly

skewed [36]; for example, hydrogen (H) and carbon (C) occur far

more frequently than elements like silicon (Si).

To account for this imbalance, we apply a masking strategy that

allocates more bits to frequently occurring labels (e.g., H and C),

and fewer bits to rare ones (e.g., Si). This allows the signature to

represent label counts more accurately while staying within the

64-bit constraint.

In cases where the count of a label exceeds the maximum rep-

resentable value within its allocated bit group (i.e., overflow), the

group remains unchanged. Despite this saturation, the resulting

signature remains valid for filtering. This is because a data vertex

is considered a valid candidate if, for each label, the count encoded

in the query signature does not exceed that of the corresponding

data signature.

4.3 Candidates Representation
We represent the candidate set for each query node using a bitmap

structure to facilitate insertion and removal operations. Specifically,

we employ arrays of integers, where each bit set to 1 indicates a

valid candidate data node. These bitmaps are stored in GPUmemory

in a contiguous, row-major layout—each row corresponding to a

query node—to exploit coalesced memory access during filtering

[49]. This layout ensures that threads within a sub-group access

nearby memory locations, which helps optimize global memory

bandwidth. Figure 4 illustrates this coalescing pattern. On modern

GPUs, such access is considered coalesced, as long as the memory

region is compact and properly aligned.

Updating the bitmap requires atomic operations to safely modify

individual bits when multiple threads write concurrently. Con-

tention is naturally limited because each integer in the bitmap cov-

ers only a small group of contiguous data nodes, and each thread

is assigned to a single data node. As a result, atomic conflicts are

limited to adjacent threads within the same sub-group that may

access the same word. The granularity of the bitmap—determined

by the number of data nodes represented per integer—can be tuned

by adjusting the integer size. Aligning this granularity with the

hardware’s sub-group size can improve efficiency. However, if the

integer size matches the sub-group size exactly, the memory con-

troller may issue memory transactions containing only a single

integer, leading to reduced throughput.

The candidate bitmaps are themost memory-intensive data struc-

ture in our pipeline. At peak usage, they consume up to 1 GB of

GPU memory to represent 3,413 query nodes and 2,745,872 data

nodes.

4.4 Filtering Candidates
The filtering process is divided into multiple refinement iterations,

each separated by host-side synchronization. It consists of three

Work-item

1 0 1
0Cached in  

Local Memory

Data Nodes

Q
ue

ry
 N

od
es

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 …
… … … … …

1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 …
… … … … …

q0. . .
qn…

Candidates

Processing q0

Work-groupsAddr.

d0 d4 d8 d12 d16

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 …
… … … … …

1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 …
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 …

q0. . .
qn…

Processing qn

d0 d4 d8 d12 d16

…

q0

qn

Fro each query node

0x05

q0
1101010 10001000

11110011 1101010

1101010 11110011

10001000 11110011

1101010 11110011

10001000 11110011

0x00

0x01

0x02

0x03

0x04

0x06

q1

q2

q3

1101010 11110011

10001000 11110011

1101010 11110011

10001000 11110011

…

10001000 11110011

10001000 11110011

0x07

0x08

0x09

0x0A

0x0B

0x0C

Candidates

(a) Memory layout.

Work-item

1 0 1
0Cached in  

Local Memory

Data Nodes

Q
ue

ry
 N

od
es

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 …
… … … … …

1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 …
… … … … …

q0. . .
qn…

Candidates

Processing q0

Work-groupsAddr.

d0 d4 d8 d12 d16

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 …
… … … … …

1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 …
1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 …

q0. . .
qn…

Processing qn

d0 d4 d8 d12 d16

…

q0

qn

Fro each query node

0x05

q0
1101010 10001000

11110011 1101010

1101010 11110011

10001000 11110011

1101010 11110011

10001000 11110011

0x00

0x01

0x02

0x03

0x04

0x06

q1

q2

q3

1101010 11110011

10001000 11110011

1101010 11110011

10001000 11110011

…

10001000 11110011

10001000 11110011

0x07

0x08

0x09

0x0A

0x0B

0x0C

Candidates

(b) Access pattern.

Figure 4: Candidates representation.

distinct GPU kernels: query signature refinement, data signature
refinement, and candidates filtering.

The signature refinement kernels assign one work-item per node—

either in the query or data graph—and perform a BFS traversal

starting from the assigned node. The depth of the BFS is determined

by the current refinement iteration. To avoid restarting the BFS

from scratch in each iteration, we cache the frontier after every step

and reuse it as the starting point for the next iteration. Additionally,

we maintain the set of nodes reached in each iteration to compute

the difference from the previous step. This allows us to refine the

signature using only newly discovered nodes.

The candidate filtering kernel assigns a single work-item to each

data node as shown in Figure 4b. As discussed in the previous

section, performance can degrade when the bitmap granularity

aligns exactly with the hardware’s sub-group size, due to ineffi-

cient memory coalescing. To address this, each work-item within

a work-group prefetches the relevant bitmap integers into local

memory before the filtering phase begins. This ensures efficient and

coalesced access to memory across the entire work-group. During

filtering, each work-item iterates over all query nodes to check

whether its assigned data node is a valid candidate. For each query

node, the work-item also iterates over a fixed set of labels, eval-

uating whether they satisfy the candidate validity conditions. In

this filtering workload, increasing the work-group size can further

improve performance, as memory bandwidth remains the primary

bottleneck.

4.5 Mapping
Mapping is a crucial step to improve the performance of the join. In

this step, each data graph is mapped only to the query graphs that

are potential matches, discarding any query graph that contains

nodes with zero candidates in that data graph. To efficiently store

the mapping between data graphs and query graphs, we designed

a Graph Mapping Compressed Representation (GMCR), which con-

sists of two vectors: data graph offsets and query graph indices. The
data graph offsets behaves similarly to the row offsets in the CSR

SC’25, June 16–21, 2025, St. Louis, MO De Caro et al.

format, and stores the starting position of each data graph’s entries

in the query graph indices. The query graph indices contain the in-

dices of all query graphs that potentially match a given data graph.

In the GMCR, a boolean is designated for every query graph index

to signify if a match occurred between that query graph and the

respective data graph during the join phase.

The mapping phase consists of two kernels: the first kernel

performs a prefix sum to compute the total size of the query graph
indices vector, and to determine the offsets that populate the data
graph offsets vector. To maintain consistency, the data graph offsets
array is also updated on the host by performing an inclusive sum.

The host then allocates the query graph indices and the boolean

vectors, followed by the second kernel that populates the query
graph indices vector.

4.6 Joining Partial Matches
In our evaluation, we considered both Depth-First Search (DFS) and

Breadth-First Search (BFS) traversal strategies. While BFS generates

multiple partial matches at each level—leading to an exponential

increase in memory usage—DFS constructs only a single partial

match per step, enabling more efficient memory usage. Additionally,

DFS naturally aligns with backtracking approaches, as candidates

can be evaluated sequentially along the traversal path.

Given that the query and data graphs we process are relatively

small and exhibit tree-like structures—with treewidth not exceeding

2—both BFS andDFS produce comparable traversal orders. However,

we adopt DFS due to its compatibility with backtracking and its

superior memory efficiency.

To implement DFS-based backtracking in SIGMo, we account for

the fact that GPU architectures do not support recursive function

calls. Instead, we simulate recursion by maintaining an explicit

stack data structure in private memory [56]. The maximum depth

of this stack is bounded by the number of nodes in the query graph.

Since our queries are small (no more than 30 nodes), we allocate a

dedicated stack for each GPU work-item, allowing it to explore the

search space without memory spillage.

In our execution model, each data graph is assigned to a work-

group. The work-items within that group iterate over all valid query

graphs, with each thread handling one query at a time. This thread-

level parallelism is feasible because both the data and query graphs

are small. By constraining the candidate set to only include nodes

from the current data graph, each work-item can efficiently explore

the full candidate space for a query without exceeding the available

resources.

In contrast to the filter phase, which benefits from a larger work-

group size to efficiently parse all candidates, the join phase performs

better with a smaller work-group size, as the number of matching

query graphs per data graph can vary significantly, leading to an

under utilization of the GPU resources for large work-group sizes.

Although this approach may appear naive at first glance, we

argue that it offers an effective balance between computational

complexity and GPU resource management. Within the specific

context of molecular graph matching—characterized by small graph

sizes and low treewidth—this method achieves strong practical

performance under real-world constraints.

1 2 3 4 5 6 7 8
Refinement Iterations

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Ca

nd
id

at
es

 p
er

 N
od

e

1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

To

ta
l C

an
di

da
te

s

1e9
Total Candidates

Figure 5: Summary of the distribution of candidate set sizes
for each refinement iteration. The box represents the distri-
bution of the candidates set sizes for each node and aligns
with the left axis, whereas the line indicates the total number
of candidates, aligning with the right axis.

1 2 3 4 5 6 7 8
Refinement Iterations

0
1
2
3
4
5
6
7
8

Ti
m

e
(s

)

Lowest Time

Filter Time
Join Time
Total Time

Figure 6: Comparison of filter and join time per each refine-
ment iteration on the entire dataset.

5 Experimental Evaluation
We tested our approach on a dataset specifically designed to bench-

mark substructure searching algorithms in molecular graphs [16],

from which we deleted single-atom patterns, resulting in 618 query

graphs and 114,901 data graphs. This dataset was sourced from the

ZINC database [24], which is currently the best source of commer-

cially available molecular structures. We also used the whole ZINC

dataset to assess the scalability of our framework.

The experiments were carried out on a system with dual Intel

Xeon Gold 5218 CPUs, 192GB RAM, and an NVIDIA V100S GPU

with 32GB VRAM. We compiled SIGMo with oneAPI v2024.2.0 [23]

compiler and CUDA v555.42 drivers.

SIGMo SC’25, June 16–21, 2025, St. Louis, MO

0.2

0.25

Diameter 1

0.4

0.6

Diameter 2

0.5
0.75

1.0
1.2

Diameter 3

1.0
2.0
3.0

Diameter 4

1.0
2.0
3.0

Diameter 5

1.0

1.5

Diameter 6

1 2 3 4 5 6 7 8

2.0

4.0

Diameter 7

1 2 3 4 5 6 7 8
0.2

0.4

0.6
Diameter 8

1 2 3 4 5 6 7 8
0.4

0.6

Diameter 9

1 2 3 4 5 6 7 8

0.4

0.6
Diameter 10

1 2 3 4 5 6 7 8
0.2
0.4
0.6
0.8

Diameter 11

1 2 3 4 5 6 7 8
0.2
0.4
0.6
0.8

Diameter 12

Refinement Iterations

To
ta

l T
im

e
(s

)

Total Time Min Time

Figure 7: Total execution time of SIGMo across refinement iterations, grouped by query graph diameter.

5.1 Assessing SIGMo
In this section, we evaluate the performance of SIGMo. It is impor-

tant to clarify that when we refer to refinement iteration 𝑖 , it means

that each node has visibility over its neighbors up to distance 𝑖 − 1.
For instance, refinement iteration 1 implies that each node is only

aware of its own label, with no neighborhood context.

5.1.1 Candidate Sets Pruning. Each refinement iteration begins

with the signature refinement of both query and data graph nodes.

While some node signatures converge earlier than others, the over-

head of continuing to refine already-converged nodes is negligible

relative to the overall computational cost. In practice, the total time

required to perform signature refinement across all query and data

nodes does not exceed 10 milliseconds, even in the largest datasets.

Figure 5 illustrates the distribution of the candidate set sizes

across query nodes (represented as box plots) and the total number

of candidates (shown as a line). A significant reduction in can-

didate sets is observed after the first iteration, highlighting the

effectiveness of early pruning. Beginning around iteration 6, the

total number of candidates plateaus, indicating that most query

graphs have reached convergence and no longer benefit from fur-

ther refinement.

Despite this convergence, outliers persist across iterations, partic-

ularly in the earlier stages. These outliers are attributed to query pat-

terns that correspond to frequent molecular substructures, which

are more likely to occur across a wide range of molecules, and thus

resist pruning. As shown in Figure 5, these outliers do reduce their

candidate sets in later iterations—when they gain a broader view of

their neighborhood—but they still retain a relatively large number

of candidates compared to the rest.

5.1.2 Filter vs. Join. Figure 6 presents a comparison between the

execution times of the filter and join phases across different refine-

ment iteration counts. The results reveal a turning point: beyond

a certain number of refinement iterations, the cost of additional

filtering outweighs the performance gains achieved during the join

phase. In other words, excessive refinement may reduce the can-

didate set further, but at the expense of increased overhead that

negates the benefits in subsequent stages.

This observation is supported by Figure 5, which shows that

the total number of candidates begins to plateau after iteration 6.

Beyond this point, only a marginal number of additional candidates

are eliminated, offering decreasing returns in terms of join phase

speedup, hence resulting in a higher overall runtime.

It is important to note that this optimal refinement depth may

vary depending on the diameter of the query graphs. Datasets

containing query graphs with larger diameters may require more

iterations before convergence is reached, as a broader neighbor-

hood view becomes necessary to effectively prune candidates. To

investigate this, we grouped the query graphs based on their di-

ameters and balanced the groups to contain the same number of

graphs. Figure 7 illustrates the total execution time of SIGMo for

these grouped query graphs. As the diameter increases, we observe

that the execution time curves shift to the right, indicating that

the best number of refinement iterations occurs later. This indi-

cates that graphs with larger diameters require more refinement

steps. Anomalies appear in the cases with diameters 8, 10, 11, and

12, where the execution exhibits irregular behavior. These query

graphs did not produce matches because in each case at least one

node had zero candidates from the first iteration. This led to null

join operations, as the mapping phase failed to associate any query

graph with a corresponding data graph. A similar behavior is ob-

served in the group of query graphs with a diameter of 9, where

the GMCR determines that no matches are possible only starting

from the second iteration.

0 500 1000 1500 2000
Application Runtime (ms)

0

20

40

60

80

100

GP
U

Oc
cu

pa
nc

y
(%

)

Da
ta

 In
iti

al
iza

tio
n

Filter
Mapping
Join

Figure 8: Profiling of the NVIDIA V100S GPU occupancy
during the SIGMo runtime with six refinement iterations.

SC’25, June 16–21, 2025, St. Louis, MO De Caro et al.

10 2 10 1 100 101 102 103

Instruction Intensity (Instr/Byte)

101

102

103

In
st

ru
ct

io
n

Th
ro

ug
hp

ut
(G

In
st

r/s
)

HBM Roof
L2 Roof
L1 Roof
Compute Roof
Filter
Mapping
Join

Figure 9: Instruction Roofline of SIGMo execution with six
refinement iterations on NVIDIA V100S.

5.1.3 Resources Utilization. On the evaluated dataset comprising

618 query graphs and 114,901 data graphs—for a total of 3,413 query

nodes and 2,745,872 data nodes—SIGMo occupies approximately

1 GB of memory. In particular, 80% of the memory footprint is

attributed to the bitset-based representation of the candidate sets.

The candidate size can be determined in advance by considering

|𝑉𝑄 | × |𝑉𝐷 |/8 bytes. The data graphs account for approximately

64 MB of memory usage, while the query graphs require only 90 KB,

both represented in the CSR-GO format. Additionally, the signature

representations for both query and data nodes collectively consume

around 128 MB.

Figure 8 shows the percentage of GPU occupancy during SIGMo

execution in six refinement iterations, profiled through NVIDIA

DCGM which defines GPU occupancy as the fraction of resident
warps on a multiprocessor, relative to the maximum number of con-
current warps supported on a multiprocessor[34]. The test was per-
formed on an NVIDIA V100S GPU. The results reveal that the

filtering phase reaches peak GPU utilization. The observed drops

in occupancy are primarily attributed to host-side synchroniza-

tion overhead, as is evident by the presence of six distinct peaks

corresponding to the filter phase. The mapping phase is relatively

brief, lasting approximately 50 milliseconds. This short duration

contributes to the observed GPU occupancy, which ranges between

47% and 55%. In contrast, the join phase exhibits a more stable oc-

cupancy of around 48%, mainly due to memory bottlenecks arising

from the irregular access patterns required to read the query and

data graphs. This behavior is evident in Figure 9, which presents the

Instruction Roofline Model (IRM) [12]—a more suitable tool for our

use case compared to the standard Roofline Model [29]. The first

filter kernel considers the neighborhood at distance 0, which means

that only the label is evaluated, motivating the low instruction

intensity.

5.2 State-of-the-Art Comparison
We evaluated our framework against three leading frameworks,

namely VF3 [7], GSI [61], and cuTS [58]. nvcc v12.3 compiled GSI

and cuTS, while VF3 was compiled using g++ 11.4.0.
In all the experiments we did not consider the time to allocate

and initialize data structures. To run the experiments on VF3, GSI,

and cuTS, we merged the data graphs into a single disconnected

graph and tested queries individually. VF3 appears to be a better

SIGMo VF3 GSI CuTS
100

101

102

103

Ti
m

e
(s

)

Our
approach

2.12

70.61

3087.84

184.86

Find All
Find First

(a) Execution time (the lower is
better).

SIGMo VF3 GSI CuTS

105

106

107

108

Th
ro

ug
hp

ut
 (m

at
ch

es
/s

) Our approach
8.64×107

2.33×106

5.39×104

1.89×107

(b) Throughput (the higher is bet-
ter).

Figure 10: Comparison of SIGMo with other CPU and GPU
state-of-the-art subgraph isomorphism frameworks.

solution for matching several queries on a large set of data graphs

compared to GSI and cuTS. In addition, GSI ran out of memory

on the largest query graphs (on graphs with more than 20 nodes).

Figure 10a shows the comparison of the execution time to find

matches. Both SIGMo and VF3 support the early stopping when

finding a match between a query graph and a data graph, while

GSI and cuTS do not. We achieve a speedup of 33.6× compared to

VF3, 1470.4× compared to GSI, and 88× compared to cuTS.

Figure 10b shows the throughput, defined as the number of

matches per second. To calculate the throughput, we considered

for both SIGMo and VF3 the time required to find all the matches.

The cuTS framework does not support labels, leading to a higher

number of matches for a single query graph.

5.3 Performance Portability
Assessing performance portability is inherently challenging, partic-

ularly when evaluating a novel solution like SIGMo that has no di-

rect counterpart or baseline [37]. In this section, we provide insights

into how SIGMo performs across different hardware platforms. We

evaluated SIGMo on three different systems, each equipped with

a different GPU architecture: an NVIDIA V100S, an AMD MI100,

and an Intel Max 1100. Compilation was performed using oneAPI

v2024.2 across all platforms to ensure consistency.

Figure 11 presents the execution time across two main com-

putation phases—filter and join—and the overall execution time

for multiple refinement iterations, while Table 1 reports the best

configuration parameters for SIGMo identified through manual

tuning.

Among the evaluated platforms, the AMD MI100 consistently

achieves the lowest execution time, particularly at five refinement

iterations with 1.70 seconds versus 2.12 seconds for NVIDIA V100S

with six iterations and 2.65 seconds for Intel Max 1100 with two

iterations. In contrast, the Intel Max 1100 exhibits the highest exe-

cution times, primarily due to the elevated cost of the filter phase.

As a result, the performance gains from reducing the candidate set

through refinement do not compensate for the overhead introduced,

making additional iterations less beneficial on this device. These

considerations highlight that the optimal number of refinement

iterations can also depend on the underlying platform. The occu-

pancy on Intel and AMD GPUs follows the same trend illustrated

in Figure 8.

SIGMo SC’25, June 16–21, 2025, St. Louis, MO

0

2

4 Filter

0

5

10

Ti
m

e
(s

) Join

1 2 3 4 5 6 7 8
Refinement Iterations

0

5

10 Total

2.121.70
2.65

NVIDIA V100S
AMD MI100
Intel Max 1100

Figure 11: Filter, join, and total execution times of SIGMo on
NVIDIA V100S, AMD MI100, and Intel Max 1100 GPUs. The
total time includes an arrow indicating the fastest execution
for each GPU.

Table 1: SIGMo configuration on three hardware platforms.

GPU Candidates

bitmap integer

Filter

Work-group

size

Join

Work-group

size

NVIDIA V100S 32 bit 1024 128

AMD MI100 64 bit 512 64

Intel Max 1100 32 bit 512 32

However, the relatively small performance gap between the three

architectures provides additional evidence of the efficiency and

portability of our approach, demonstrating that SIGMo can achieve

competitive performance even on diverse hardware.

5.4 Scalability Evaluation
We evaluated the weak scaling of SIGMo on single and multiple

GPUs.

5.4.1 Single GPU Scalability. We evaluated the scalability of our

framework on a single GPU. Figure 12 illustrates how SIGMo per-

formance scales as the number of data graphs increases up to the

maximum available memory of the GPU, while the number of

query graphs remains constant. Overall, the framework demon-

strates good scalability with input size, exhibiting sublinear growth

in execution time. This trend is especially clear in the Find First exe-
cution. In contrast, the Find All execution displays more variability

and more pronounced increases in runtime at higher scale factors.

However, this is acceptable because we assign a different data graph

to each work-group. As a result, when all available compute units

are saturated, SYCL schedules these executions into multiple join

kernels. This explains the overhead observed, for example, when

increasing the scale factor from 16 to 17.

2 5 8 10 13 16 19 21 24 27 30 32 35 38 41 43 46 49 52 54 57 60 63 65 68 71
Total Data Nodes (×106)

0

10

20

30

40

To
ta

l T
im

e
(s

)

Ou
t o

f M
em

or
y

×1.0
×2.8

×4.7
×6.5

×8.4
×10.2

×12.1
×13.9

×15.8
×17.7

×19.5
×21.4

×23.3

×2.7 ×4.5 ×6.2 ×7.9 ×9.7 ×11.4 ×13.1 ×14.9 ×16.7 ×18.5 ×20.2 ×22.0

Find All
Find First

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Dataset Scale Factor

Figure 12: Single-GPU scalability of SIGMo in both ‘Find
All’ and ‘Find First’ modes. The plot shows how the perfor-
mance scale by increasing the dataset size. The bottom x-axis
represents the size of the data graphs, while the top x-axis
indicates the corresponding dataset scale factors. Numbers
along each line denote the relative execution time compared
to the baseline (first execution).

16 32 64 128 256
GPUs

10
11
12
13
14
15
16
17

Ti
m

e
(s

)

(a) Execution time (the lower is
better).

16 32 64 128 256
GPUs

226

227

228

229

230

231

232

233

Th
ro

ug
hp

ut
 (m

at
ch

es
/s

) Find All
Find First

(b) Throughput (the higher is bet-
ter).

Figure 13: Execution of SIGMo on a multi-node environment
with up to 256 NVIDIA A100 GPUs.

5.4.2 Multi Node Scalability. We evaluated the performance of

SIGMo on an HPC cluster, where each node is equipped with

four NVIDIA A100 GPUs. The experiments were carried out using

molecules extracted from the ZINC dataset [48], along with a fixed

set of 389 queries. For inter-node communication, we used Intel MPI

v2021.11. Figure 13 reports the median results of five executions

performed with 16, 32, 64, 128, and 256 GPUs, each running six

refinement iterations. The plot demonstrates that our framework

scales efficiently across the cluster, exhibiting linear performance

gains in log-log space as the number of nodes increases.

We used static partitioning on the ZINC dataset, assigning 500,000

molecules to each GPU. Consequently, increasing the number of

nodes led to a proportional increase in the total number ofmolecules

processed from the dataset. Figure 14 illustrates the runtime of each

MPI process, where each process is mapped to a single GPU in

the 256-GPU configuration. Due to the static partitioning strategy,

variations in execution time are observed due to the different num-

ber of candidates produced, reflecting differences in the molecular

workloads assigned to each process [43]. Although more adaptive

SC’25, June 16–21, 2025, St. Louis, MO De Caro et al.

0 ... 63 ... 127 ... 191 ... 255
GPU ID

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Ti
m

e
(s

)

Find All Find First

Figure 14: Runtime of each MPI process on 256 GPUs.

load-balancing approaches have been shown to improve scalabil-

ity [27], the observed runtime variability remains low, with a coef-

ficient of variation of only 4% in the Find First execution and 8% in

the Find All execution.
At peak scale, SIGMo successfully processed up to 128 million

molecules in about 17 seconds, producing 129,575 billion total

matches in the Find All execution and achieving a peak throughput

of up to 7.7 billion matches per second.

6 Related Work
Subgraph isomorphism is a well-known NP-complete problem with

extensive research across CPU and GPU platforms. The early foun-

dational work by Ullmann [52] laid the theoretical foundations,

introducing a backtracking algorithm with pruning strategies. This

was followed by more advanced techniques such as VF2 [11], and

its successors VF2Plus[8] and VF3 [7], which introduced more ad-

vanced state-space search techniques with improved performance

on biological graphs [16], making them widely used on CPU ar-

chitectures. Several CPU-based subgraph isomorphism algorithms

have shown strong performance across various benchmarks. RI

and its extension RI-DS [6] use recursive search and degree se-

quence filtering to efficiently prune the candidate space, particu-

larly in sparse graphs. The Glasgow Subgraph Solver [32] applies

constraint programming techniques combined with bitset-based

data structures. TurboISO [21] introduces a neighborhood label fre-

quency index and region exploration for fast matching over large

graphs. QuickSI [44] focuses on minimizing verification time using

a heuristic-driven matching order, making it one of the first scal-

able solutions for labeled graphs. These frameworks, while highly

optimized for single-query execution, are not designed for large

batched molecular matching, which is the primary focus of SIGMo.

Although CPU-based algorithms remain effective, they struggle

to scale to high-throughput workloads. This has led to increased

interest in GPU-based frameworks that exploit massive parallelism.

Among these, cuTS [58], GSI [61], PARSEC [13], and STMatch [56]

are notable. CuTS uses a trie-based structure and performs well in

distributed multi-GPU environments, Parsec accelerates subgraph

enumeration using parallel traversal and candidate expansion strate-

gies, while STMatch accelerates subgraph matching on GPUs using

stack-based loop optimizations to replace recursive DFS, reducing

divergence and improving efficiency for individual pattern matches.

These frameworks lack support for labeled graphs, which limits

Table 2: Comparison against the state of the art.

Domain-

specific

GPU

Offload

Batched

Matching

Exact

Matching

O’Boyle et al. [35] ✓ ✗ ✗ ✗

Carletti et al [7] ✗ ✗ ✗ ✓

Xiang et al. [58] ✗ CUDA ✗ ✓

Zeng et al. [60, 61] ✗ CUDA ✗ ✓

Our work ✓ Heterog.
1 ✓ ✓

1
Heterog. refers to support for heterogeneous backends such as CUDA, HIP, Lev-

elZero, and OpenCL.

their utility in molecular domains, where labels represent meaning-

ful constraints formatching. GSI and its scalable extension SGSI [60]

leverage parallelism on GPU architectures, but suffer from high

memory overhead, especially when processing large query graphs.

DGSM [20] also implements GPU-accelerated subgraph matching

using depth-first search strategies using a backtracking unrolling

strategy. However, it does not target specific constraints of batched

molecular matching, and their scalability is often limited to smaller

datasets or single query workloads. Our method draws inspiration

from VSGM [25], which introduces a view-based approach to filter

candidate nodes by examining multi-hop neighborhoods. Although

VSGM achieves strong filtering efficiency, it operates on single

query-data graph pairs and does not address batching or memory

optimization for large-scale molecular datasets. SIGMo builds upon

this idea by introducing iterative signature refinement [40], allow-

ing highly selective filtering that reduces the search space before the

join phase. This is especially critical for molecular matching, where

node labels and neighborhood context carry significant meaning.

Various techniques for molecular matching circumvent the need

for subgraph isomorphism, opting instead for fingerprint-based

algorithms [40], canonical SMARTS/SMILES evaluation [35], and

molecular embeddings learned through graph neural networks

(GNNs) [41, 55, 59]. Despite their efficiency, these methods are

inherently approximate and can produce not only false positives,

but also false negatives—potentially missing relevant molecular

matches.

Table 2 summarizes the contributions of SIGMo in relation to

some of the state-of-the-art frameworks. In contrast to these works,
SIGMo is the first portable high-performance subgraph isomorphism
GPU framework for molecular matching, designed to query a large
dataset of molecules simultaneously in a batched fashion.

7 Conclusion
In this study, we presented SIGMo, the first portable and high-
throughput GPU subgraph isomorphism framework tailored for

the molecular matching problem, which exploits GPU parallelism

to match multiple queries on multiple data graphs simultaneously.

We also proposed a novel filter strategy that is designed to prune

candidates in labeled graphs through inspection of neighborhood

constraints.

Experimental results show that SIGMo significantly outperforms

the current state-of-the-art GPU solution, achieving speedups of

up to 1470.4× and surpassing the leading CPU-based solution by

SIGMo SC’25, June 16–21, 2025, St. Louis, MO

up to 33.6×. Furthermore, SIGMo demonstrates excellent scalabil-

ity, reaching a peak throughput of 7.7 billion matches per second

on a cluster equipped with 256 GPUs. As a next step, we plan to

extend SIGMo to support wildcard atoms and bonds, which are

used in cheminformatics to express flexible or partially specified

substructures.

References
[1] M. A. Abdulrahim and M. Misra. 1998. A Graph Isomorphism Algorithm for

Object Recognition. Pattern Analysis and Applications 1, 3 (1998), 189–201. doi:10.
1007/BF01259368

[2] Merve Asiler and Adnan Yazıcı. 2018. BB-Graph: A Subgraph Isomorphism Algo-
rithm for Efficiently Querying Big Graph Databases. doi:10.48550/arXiv.1706.06654
arXiv:1706.06654 [cs]

[3] László Babai. 2016. Graph isomorphism in quasipolynomial time [extended

abstract]. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, Daniel Wichs

and Yishay Mansour (Eds.). ACM, New York, NY, USA, 684–697. doi:10.1145/

2897518.2897542

[4] John A Barnes and Frank Harary. 1983. Graph theory in network analysis. Social
networks 5, 2 (1983), 235–244.

[5] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Al-

fredo Ferro. 2013. A Subgraph Isomorphism Algorithm and Its Application to

Biochemical Data. BMC Bioinformatics 14, S7 (2013), S13. doi:10.1186/1471-2105-
14-S7-S13

[6] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Al-

fredo Ferro. 2013. A subgraph isomorphism algorithm and its application to

biochemical data. BMC bioinformatics 14 (2013), 1–13.
[7] Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento. 2017.

Introducing VF3: A new algorithm for subgraph isomorphism. In Graph-Based
Representations in Pattern Recognition: 11th IAPR-TC-15 International Workshop,
GbRPR 2017, Anacapri, Italy, May 16–18, 2017, Proceedings 11. Springer, Berlin,
Germany, 128–139.

[8] Vincenzo Carletti, Pasquale Foggia, andMario Vento. 2015. VF2 Plus: An improved

version of VF2 for biological graphs. In Graph-Based Representations in Pattern
Recognition: 10th IAPR-TC-15 International Workshop, GbRPR 2015, Beijing, China,
May 13-15, 2015. Proceedings 10. Springer, Berlin, Germany, 168–177.

[9] Matthew Clark, Richard D. Cramer, and Nicole Van Opdenbosch. 1989. Validation

of the General Purpose Tripos 5.2 Force Field. Journal of Computational Chemistry
10, 8 (1989), 982–1012. doi:10.1002/jcc.540100804

[10] Jonathan Clayden, Nick Greeves, and Stuart Warren. 2012. Organic Chemistry
(2nd ed ed.). Oxford university press, Cary, NC, USA.

[11] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)

graph isomorphism algorithm for matching large graphs. IEEE transactions on
pattern analysis and machine intelligence 26, 10 (2004), 1367–1372.

[12] Nan Ding and Samuel Williams. 2019. An Instruction Roofline Model for GPUs.

In 2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS). IEEE, Piscataway, NJ, US, 7–18. doi:10.
1109/PMBS49563.2019.00007

[13] Vibhor Dodeja, Mohammad Almasri, Rakesh Nagi, Jinjun Xiong, and Wen-mei

Hwu. 2022. PARSEC: Parallel subgraph enumeration in CUDA. In 2022 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). IEEE, Piscataway,
NJ, US, 168–178.

[14] Yuanqi Du, Shiyu Wang, Xiaojie Guo, Hengning Cao, Shujie Hu, Junji Jiang, Aish-

warya Varala, Abhinav Angirekula, and Liang Zhao. 2021. GraphGT: Machine

Learning Datasets for Graph Generation and Transformation. In NeurIPS 2021.
[15] Hans-Christian Ehrlich and Matthias Rarey. 2011. Maximum Common Subgraph

Isomorphism Algorithms and Their Applications in Molecular Science: A Review.

WIREs Computational Molecular Science 1, 1 (2011), 68–79. doi:10.1002/wcms.5

[16] Hans-Christian Ehrlich and Matthias Rarey. 2012. Systematic benchmark of

substructure search in molecular graphs-From Ullmann to VF2. Journal of chem-
informatics 4 (2012), 1–17.

[17] Davide Gadioli, Emanuele Vitali, Federico Ficarelli, Chiara Latini, Candida

Manelfi, Carmine Talarico, Cristina Silvano, Carlo Cavazzoni, Gianluca Palermo,

and Andrea Rosario Beccari. 2022. EXSCALATE: An Extreme-Scale Virtual

Screening Platform for Drug Discovery Targeting Polypharmacology to Fight

SARS-CoV-2. IEEE Transactions on Emerging Topics in Computing 11, 1 (2022),

1–12. doi:10.1109/TETC.2022.3187134

[18] The Khronos® SYCL™ Working Group. 29-03-2023. SYCL 2020 Specification
(revision 8) — registry.khronos.org. Khronos Group. https://registry.khronos.org/

SYCL/specs/sycl-2020/html/sycl-2020.html

[19] Thomas A. Halgren. 1996. Merck Molecular Force Field. I. Basis, Form, Scope,

Parameterization, and Performance of MMFF94. Journal of Computational Chem-
istry 17, 5–6 (1996), 490–519. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490::

AID-JCC1>3.0.CO;2-P

[20] Wei Han, Connor Holmes, and Bo Wu. 2022. DGSM: A GPU-Based Subgraph

Isomorphism framework with DFS exploration. In 2022 IEEE/ACM Redefining
Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA). IEEE,
Piscataway, NJ, US, 1–11.

[21] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: towards

ultrafast and robust subgraph isomorphism search in large graph databases. In

Proceedings of the 2013 ACM SIGMOD international conference on management of
data. ACM, New York, NY, USA, 337–348.

[22] Jp Hughes, S Rees, Sb Kalindjian, and Kl Philpott. 2011. Principles of Early Drug

Discovery. British Journal of Pharmacology 162, 6 (2011), 1239–1249. doi:10.1111/

j.1476-5381.2010.01127.x

[23] Intel®. 2024. oneAPI Base Toolkit. Intel. https://www.intel.com/content/www/

us/en/developer/tools/oneapi/base-toolkit.html

[24] John J Irwin and Brian K Shoichet. 2005. ZINC- a free database of commercially

available compounds for virtual screening. Journal of chemical information and
modeling 45, 1 (2005), 177–182.

[25] Guanxian Jiang, Qihui Zhou, Tatiana Jin, Boyang Li, Yunjian Zhao, Yichao Li, and

James Cheng. 2022. VSGM: view-based GPU-accelerated subgraph matching on

large graphs. In SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, Piscataway, NJ, US, 1–15.

[26] William L. Jorgensen, David S. Maxwell, and Julian Tirado-Rives. 1996. De-

velopment and Testing of the OPLS All-Atom Force Field on Conformational

Energetics and Properties of Organic Liquids. Journal of the American Chemical
Society 118, 45 (1996), 11225–11236. doi:10.1021/ja9621760

[27] Jonas H. M"uller Kornd"orfer, Ahmed Eleliemy, Ali Mohammed, and Florina M.

Ciorba. 2022. LB4OMP: A Dynamic Load Balancing Library for Multithreaded

Applications. IEEE Trans. Parallel Distributed Syst. 33, 4 (2022), 830–841. doi:10.
1109/TPDS.2021.3107775

[28] Paul D. Leeson and Brian Springthorpe. 2007. The Influence of Drug-like Concepts

on Decision-Making in Medicinal Chemistry. Nature Reviews Drug Discovery 6,

11 (2007), 881–890. doi:10.1038/nrd2445

[29] Matthew Leinhauser, René Widera, Sergei Bastrakov, Alexander Debus, Michael

Bussmann, and Sunita Chandrasekaran. 2022. Metrics and Design of an Instruc-

tion Roofline Model for AMD GPUs. ACM Trans. Parallel Comput. 9, 1, Article 1
(Jan. 2022), 14 pages. doi:10.1145/3505285

[30] Jiajie Li, Jan-Niklas Schmelzle, Yixiao Du, Simon Heumos, Andrea Guarracino,

Giulia Guidi, Pjotr Prins, Erik Garrison, and Zhiru Zhang. 2024. Rapid GPU-Based

Pangenome Graph Layout. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (Atlanta, GA, USA)
(SC ’24). IEEE Press, Piscataway, NJ, Article 29, 19 pages. doi:10.1109/SC41406.

2024.00035

[31] Candida Manelfi, Valerio Tazzari, Filippo Lunghini, Carmen Cerchia, Anna Fava,

Alessandro Pedretti, Pieter F. W. Stouten, Giulio Vistoli, and Andrea Rosario

Beccari. 2024. “DompeKeys”: A Set of Novel Substructure-Based Descriptors

for Efficient Chemical Space Mapping, Development and Structural Interpreta-

tion of Machine Learning Models, and Indexing of Large Databases. Journal of
Cheminformatics 16, 1 (2024), 21. doi:10.1186/s13321-024-00813-4

[32] Ciaran McCreesh, Patrick Prosser, and James Trimble. 2020. The Glasgow sub-

graph solver: using constraint programming to tackle hard subgraph isomorphism

problem variants. In International Conference on Graph Transformation. Springer,
Berlin, Germany, 316–324.

[33] Jeffrey Mendenhall, Benjamin P. Brown, Sandeepkumar Kothiwale, and Jens

Meiler. 2021. BCL::Conf: Improved Open-Source Knowledge-Based Conforma-

tion Sampling Using the Crystallography Open Database. Journal of Chemical
Information and Modeling 61, 1 (2021), 189–201. doi:10.1021/acs.jcim.0c01140

[34] NVIDIA. 2025. NVIDIA DCGM. https://developer.nvidia.com/dcgm.

[35] Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeer-

sch, and Geoffrey R Hutchison. 2011. Open Babel: An open chemical toolbox.

Journal of cheminformatics 3 (2011), 1–14.
[36] Linus Pauling. 1988. General chemistry. Courier Corporation, North Chelmsford,

MA, US.

[37] Simon J Pennycook, Jason D Sewall, and Victor W Lee. 2019. Implications of

a metric for performance portability. Future Generation Computer Systems 92
(2019), 947–958.

[38] Jay W. Ponder and David A. Case. 2003. Force Fields for Protein Simulations. In

Advances in Protein Chemistry. Vol. 66. Elsevier, Amsterdam, 27–85. doi:10.1016/

S0065-3233(03)66002-X

[39] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff. 1992.

UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular

Dynamics Simulations. Journal of the American Chemical Society 114, 25 (1992),

10024–10035. doi:10.1021/ja00051a040

[40] David Rogers and Mathew Hahn. 2010. Extended-connectivity fingerprints.

Journal of chemical information and modeling 50, 5 (2010), 742–754.

[41] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,

and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale

molecular data. Advances in neural information processing systems 33 (2020),

12559–12571.

https://doi.org/10.1007/BF01259368
https://doi.org/10.1007/BF01259368
https://doi.org/10.48550/arXiv.1706.06654
https://arxiv.org/abs/1706.06654
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1186/1471-2105-14-S7-S13
https://doi.org/10.1186/1471-2105-14-S7-S13
https://doi.org/10.1002/jcc.540100804
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1109/PMBS49563.2019.00007
https://doi.org/10.1002/wcms.5
https://doi.org/10.1109/TETC.2022.3187134
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html
https://doi.org/10.1021/ja9621760
https://doi.org/10.1109/TPDS.2021.3107775
https://doi.org/10.1109/TPDS.2021.3107775
https://doi.org/10.1038/nrd2445
https://doi.org/10.1145/3505285
https://doi.org/10.1109/SC41406.2024.00035
https://doi.org/10.1109/SC41406.2024.00035
https://doi.org/10.1186/s13321-024-00813-4
https://doi.org/10.1021/acs.jcim.0c01140
https://developer.nvidia.com/dcgm
https://doi.org/10.1016/S0065-3233(03)66002-X
https://doi.org/10.1016/S0065-3233(03)66002-X
https://doi.org/10.1021/ja00051a040

SC’25, June 16–21, 2025, St. Louis, MO De Caro et al.

[42] Robert Schmidt, Emanuel S. R. Ehmki, Farina Ohm, Hans-Christian Ehrlich,

Andriy Mashychev, and Matthias Rarey. 2019. Comparing Molecular Patterns

Using the Example of SMARTS: Theory and Algorithms. Journal of Chemical
Information and Modeling 59, 6 (2019), 2560–2571. doi:10.1021/acs.jcim.9b00250

[43] Steffen Seckler, Nikola Tchipev, Hans-Joachim Bungartz, and Philipp Neumann.

2016. Load Balancing for Molecular Dynamics Simulations on Heterogeneous

Architectures. In 23rd IEEE International Conference on High Performance Comput-
ing, HiPC 2016, Hyderabad, India, December 19-22, 2016. IEEE Computer Society,

2001 L Street N.W., Washington, DC, 101–110. doi:10.1109/HIPC.2016.021

[44] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming

verification hardness: an efficient algorithm for testing subgraph isomorphism.

Proceedings of the VLDB Endowment 1, 1 (2008), 364–375.
[45] John C. Shelley, Anuradha Cholleti, Leah L. Frye, Jeremy R. Greenwood,

Mathew R. Timlin, and Makoto Uchimaya. 2007. Epik: A Software Program for pK

a Prediction and Protonation State Generation for Drug-like Molecules. Journal
of Computer-Aided Molecular Design 21, 12 (2007), 681–691. doi:10.1007/s10822-

007-9133-z

[46] Richard A Snay. 1976. Reducing the profile of sparse symmetric matrices. Bulletin
géodésique 50, 4 (Dec. 1976), 341–352.

[47] Yunhao Sun, Guanyu Li, Jingjing Du, Bo Ning, and Heng Chen. 2022. A Subgraph

Matching Algorithm Based on Subgraph Index for Knowledge Graph. Frontiers
of Computer Science 16, 3 (2022), 163606. doi:10.1007/s11704-020-0360-y

[48] Benjamin I Tingle, Khanh G Tang, Mar Castanon, John J Gutierrez, Munkhzul

Khurelbaatar, Chinzorig Dandarchuluun, Yurii S Moroz, and John J Irwin. 2023.

ZINC-22—A free multi-billion-scale database of tangible compounds for ligand

discovery. Journal of chemical information and modeling 63, 4 (2023), 1166–1176.

[49] Nishith Tirpankar and Hari Sundar. 2018. Towards Triangle Counting on GPU

using Stable Radix binning. In 2018 IEEE High Performance Extreme Comput-
ing Conference, HPEC 2018, Waltham, MA, USA, September 25-27, 2018. IEEE,
Piscataway, NJ, 1–6. doi:10.1109/HPEC.2018.8547543

[50] TOP500.org. 2024. November 2024 | TOP500. TOP500. https://top500.org/lists/

top500/2024/11/

[51] Nenad Trinajstic. 2018. Chemical graph theory. CRC press.

[52] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM) 23, 1 (1976), 31–42.

[53] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E.

Darian, O. Guvench, P. Lopes, I. Vorobyov, and A. D. Mackerell. 2010. CHARMM

General Force Field: A Force Field for Drug-like Molecules Compatible with the

CHARMM All-atom Additive Biological Force Fields. Journal of Computational
Chemistry 31, 4 (2010), 671–690. doi:10.1002/jcc.21367

[54] JunmeiWang, RomainM.Wolf, JamesW. Caldwell, Peter A. Kollman, and David A.

Case. 2004. Development and Testing of a General Amber Force Field. Journal of
Computational Chemistry 25, 9 (2004), 1157–1174. doi:10.1002/jcc.20035

[55] Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. 2022.

Molecular contrastive learning of representations via graph neural networks.

Nature Machine Intelligence 4, 3 (2022), 279–287.
[56] Yihua Wei and Peng Jiang. 2022. STMatch: accelerating graph pattern matching

on GPU with stack-based loop optimizations. In SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, Piscataway,
NJ, US, 1–13.

[57] E.K. Wong. 1992. Model Matching in Robot Vision by Subgraph Isomorphism.

Pattern Recognition 25, 3 (1992), 287–303. doi:10.1016/0031-3203(92)90111-U

[58] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and Aravind

Sukumaran-Rajam. 2021. cuTS: scaling subgraph isomorphism on distributed

multi-GPU systems using trie based data structure. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (St. Louis, Missouri) (SC ’21). ACM, New York, NY, USA, Article 69,

14 pages. doi:10.1145/3458817.3476214

[59] Xinxing Yang, Genke Yang, and Jian Chu. 2024. GraphCL-DTA: a graph con-

trastive learning with molecular semantics for drug-target binding affinity predic-

tion. IEEE Journal of Biomedical and Health Informatics 28, 8 (2024), 4544–4552.
[60] Li Zeng, Lei Zou, and M Tamer Özsu. 2022. SGSI–A Scalable GPU-friendly

Subgraph Isomorphism Algorithm. IEEE Transactions on Knowledge and Data
Engineering 35, 11 (2022), 11899–11916.

[61] Li Zeng, Lei Zou, M Tamer Özsu, Lin Hu, and Fan Zhang. 2020. GSI: GPU-

friendly subgraph isomorphism. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE, Piscataway, NJ, US, 1249–1260.

https://doi.org/10.1021/acs.jcim.9b00250
https://doi.org/10.1109/HIPC.2016.021
https://doi.org/10.1007/s10822-007-9133-z
https://doi.org/10.1007/s10822-007-9133-z
https://doi.org/10.1007/s11704-020-0360-y
https://doi.org/10.1109/HPEC.2018.8547543
https://top500.org/lists/top500/2024/11/
https://top500.org/lists/top500/2024/11/
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1016/0031-3203(92)90111-U
https://doi.org/10.1145/3458817.3476214

	Abstract
	1 Introduction
	2 Background
	2.1 Molecular Matching
	2.2 Problem Definition and Constraints

	3 Molecular Matching Strategy
	4 SIGMo Implementation
	4.1 CSR-GO Graph Representation
	4.2 Signature Representation
	4.3 Candidates Representation
	4.4 Filtering Candidates
	4.5 Mapping
	4.6 Joining Partial Matches

	5 Experimental Evaluation
	5.1 Assessing SIGMo
	5.2 State-of-the-Art Comparison
	5.3 Performance Portability
	5.4 Scalability Evaluation

	6 Related Work
	7 Conclusion
	References

